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Abstract
A quantum control landscape is defined as the expectation value of a target
observable � as a function of the control variables. In this work, control
landscapes for open quantum systems governed by Kraus map evolution are
analyzed. Kraus maps are used as the controls transforming an initial density
matrix ρi into a final density matrix to maximize the expectation value of the
observable �. The absence of suboptimal local maxima for the relevant control
landscapes is numerically illustrated. The dependence of the optimization
search effort is analyzed in terms of the dimension of the system N, the initial
state ρi and the target observable �. It is found that if the number of nonzero
eigenvalues in ρi remains constant, the search effort does not exhibit any
significant dependence on N. If ρi has no zero eigenvalues, then the computa-
tional complexity and the required search effort rise with N. The dimension of
the top manifold (i.e., the set of Kraus operators that maximizes the objective)
is found to positively correlate with the optimization search efficiency. Under
the assumption of full controllability, incoherent control modeled by Kraus
maps is found to be more efficient in reaching the same value of the objective
than coherent control modeled by unitary maps. Numerical simulations are
also performed for control landscapes with linear constraints on the available
Kraus maps, and suboptimal maxima are not revealed for these landscapes.

PACS numbers: 02.30.Yy, 03.65.Yz, 02.60.Pn, 02.40.Vh

1. Introduction

The general goal of quantum control is to apply a suitable external field to a system in order to
maximize the expectation value of a target operator. If the system under control is isolated from
the environment, then the dynamics are coherent and described by a unitary transformation, as
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appears in coherent control [1–9]. In practice, all real systems are open and interact with the
environment in some fashion, so that the dynamics of the system will have some incoherent
component. Such incoherent control through interaction with the environment [10–16] or
through quantum measurements [17–23] can be beneficial in many cases (e.g., in creation of
thermal beams of metastable noble gases [24], in quantum computing with mixed states [25]
or in the modification of Grover’s algorithm [26] to extend the capabilities of the original
unitary scheme).

In this paper, we consider the most general class of physically allowed state
transformations of controlled open quantum systems. These transformations are represented
by Kraus maps [27] providing a kinematic description of incoherent control. Embedded in
these maps is information about the system and environment, both of which may be subject
to control. A control action determines the system’s evolution with a Kraus map �, which
transforms an initial system state ρi into the evolved final state ρf = �(ρi). The final state ρf

determines the expectation value J [�] := 〈�〉 = Tr[�(ρi)�] = Tr[ρf�] of a target Hermitian
operator � representing a desired physical property to be optimized. The corresponding
control goal is formulated as follows: given an initial state ρi and a target observable �, find
a Kraus map �opt that transforms ρi into a state maximizing the expectation value, i.e., such
that J [�opt] = max� J [�]. The set of all Kraus maps for a given quantum system forms a
complex Stiefel manifold to formulate the control goal as a nonlinear problem of maximizing
the objective function J over the Stiefel manifold.

As shown in [28], for any desired final state ρf there exists a Kraus map �ρf that transforms
all initial states ρi into ρf , i.e., such that �ρf (ρi) = ρf for any ρi. If |ψ〉 is an eigenvector of
the target operator � that corresponds to the maximal eigenvalue θmax, then the expectation
Tr[ρf�] is maximized by the final state ρf = ρf,ψ = |ψ〉〈ψ | and therefore the objective
J [�] = Tr[�(ρi)�] is maximized, e.g., by the optimal map � = �ρf,ψ . The corresponding
maximum objective value is Jmax = θmax. Thus, the ability to generate dynamically arbitrary
Kraus maps for an open quantum system implies its complete state-to-state controllability and,
in particular, complete controllability for the objectives of the form J = 〈�〉. In contrast, a
closed quantum system controlled by unitary dynamics has restricted state controllability; if ρi

and ρf do not have the same eigenvalue spectrum, there does not exist a unitary transformation
U such that UρiU

† = ρf . The maximum attained value for the objective J = 〈�〉 in this case
will generally be less than θmax.

The quantum control landscape is defined by J = 〈�〉 as a function of the control
variables. The ability to successfully use a gradient or other local algorithms for maximization
of the objective function depends on the existence or the absence of suboptimal local maxima.
If local maxima exist, a local algorithm could get stuck at such points, and for this reason, we
refer to suboptimal local maxima as ‘traps;’ the presence of local saddle points should not serve
as traps. In the case of coherent laser control, the landscape is known to be trap free [29, 30].

A detailed analysis of the control landscapes for incoherent control of open two-level
quantum systems was performed [31], where the absence of traps for these landscapes was
proven. Arbitrary multi-level systems were considered in [32], where it was shown that no
suboptimal traps exist for the control landscapes for any finite-level open quantum system.
In addition, a high-dimensional submanifold of optimal controls was found. As in the case
of coherent control, these results on the absence of traps and the multi-dimensionality of the
global optimum manifold provide a theoretical foundation for the empirical fact that it is
relatively easy to find optimal solutions even in the presence of an environment.

The absence of traps in control landscapes for both closed and open quantum systems
implies that the search using a local algorithm will eventually reach a global optimum solution.
However, the absence of traps does not specify the efficiency of the optimization procedure and
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the search effort needed to reach the solution. The efficiency of the optimization procedure to
find an optimal control, which is of practical importance due to limitations on computer time
in simulations and laboratory resources in experiments, is determined by the local features
of the control landscape as well as its topological characteristics. Different trap-free control
landscapes can exhibit different degrees of search complexity. The prior relevant theoretical
landscape analyses [31, 32] for incoherent control of open quantum systems did not describe
the dependence of efficiency on the key parameters of the control problem: the dimension of
the system N and the eigenvalues of the target operator � and the initial state ρ. For closed
quantum systems, a theoretical analysis of the computational complexity of coherent control
landscapes was performed [33, 34] along with a numerical analysis of the search effort using
gradient, genetic and simplex algorithms [35, 36]. The results indicate that the search effort
scales weakly, or possibly independently, with the dimension of the system N.

This paper presents a numerical analysis, with a gradient algorithm, of the search effort for
incoherent control of open quantum systems. The analysis lends insight into the topological
and structural characteristics of the corresponding quantum control landscapes. It shows
that the search effort for driving a pure state into another pure state with Kraus maps remains
relatively constant as the dimension N of the system increases, and this behavior is qualitatively
similar to the scaling behavior of the search effort for closed systems [35, 36]. A more general
result is established for arbitrary, not necessarily pure, initial states: the search effort is
essentially determined by the number of nonzero eigenvalues of the initial state ρ, and not by
the dimension of the system N. Thus, when the number of nonzero eigenvalues of the initial
state remains constant, the search effort does not depend on N. At the extreme of driving a
mixed state with no zero eigenvalues into a pure state, the search effort increases with the
dimension of the system. The detailed analysis shows that the search effort is sensitive to the
eigenstructure of the initial state ρ and the target operator �; specifically, the degeneracies
of the zero eigenvalue of ρ and of the maximal eigenvalue of � positively correlate with the
search efficiency, so that higher values of these degeneracies require less optimization search
effort and correspond to a more efficient search. Further, a comparative analysis of incoherent
and coherent control shows that incoherent control under the full controllability assumption is
a more efficient process than coherent control, indicating that the additional control freedom
afforded by incoherent control can decrease the complexity of the problem. Finally, an
analysis of control landscapes with linear constraints on the control variables is performed,
and it does not reveal the presence of suboptimal traps even for a large number of independent
constraints. Use of Kraus maps for modeling the controlled evolution of the system in this
paper greatly simplifies computations as it does not require solving the dynamical evolution
equations. Analysis of the scaling properties of the search effort for dynamical optimization
of open quantum systems remains as an issue for future study that can be performed using
various specific models for the system and the environment [37, 38].

This paper is organized as follows. Section 2 describes the general theoretical framework
for the kinematic analysis of incoherent control of multilevel open quantum systems. The
expressions for the gradient and Hessian of the objective function J are derived in section 3.
Section 4 contains the results of the numerical simulations. Section 4.1 describes the details of
the optimization procedure, and section 4.2 discusses the distribution of the objective values for
randomly generated controls. Section 4.3 computationally demonstrates the absence of traps
in the control landscape for a five-level quantum system. Section 4.4 shows the dependence of
optimization efficiency on the dimension of the quantum system, and section 4.5 examines the
dependence of the computational complexity on the degeneracy structure of the eigenvalues
of the initial state and target observable. Section 4.6 compares the computational efficiency
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of coherent and incoherent control. Optimization over constrained landscapes is investigated
in section 5. Concluding remarks are given in section 6.

2. Formulation of control for arbitrary N-level systems

In this section, the evolution of controlled N-level open quantum systems is modeled by Kraus
maps. As background, first the common formulation of the objective function in terms of
Kraus operators is provided. Then the control problem is reformulated as optimization over a
suitable Stiefel manifold; this representation is used in the subsequent numerical analysis.

2.1. Kraus maps

Let MN be the vector space of N × N complex matrices, with identity matrix IN . The
density matrix ρ ∈ MN of an N-level quantum system is a positive semidefinite (and therefore
Hermitian) matrix with unit trace, Tr ρ = 1. A linear map � : MN → MN is positive if
�(M) � 0 for any M ∈ MN such that M � 0. The most general evolution transformations
of density matrices are given by linear Kraus maps � : MN → MN , which are defined by
the following two properties:

• Complete positivity: For any integer n, the map � ⊗ In acting on MN ⊗ Mn is positive,
where ⊗ denotes the Kronecker product.

• Trace preserving: For any M ∈ MN, Tr �(M) = Tr M .

Any Kraus map � can be written in the Kraus operator-sum representation (OSR) form

�(ρ) =
l∑

i=1

KiρK
†
i , (1)

and the trace preservation condition implies for the Kraus operators Ki ∈ MN that the relation
is satisfied:

l∑
i=1

K
†
i Ki = IN . (2)

There exist many equivalent operator-sum representations of the same Kraus map. In
particular, as shown in [39], for any OSR with l > N2 Kraus operators there exists an
equivalent OSR with no more than N2 Kraus operators. Thus, we only need to consider the
OSR with l = N2 Kraus operators (some of the Kraus operators can be zero matrices). Even
for l = N2 the decomposition (1) is not unique. Indeed, let U(n) be the set of n × n unitary
matrices and let U ∈ U(N2) be a unitary matrix with matrix elements uij . Define a new set of
Kraus operators by the relation

K̃j =
N2∑
i=1

ujiKi, 1 � j � N2. (3)

Then
∑N2

i=1 K̃
†
i K̃i = IN and �(ρ) = ∑N2

i=1 KiρK
†
i = ∑N2

i=1 K̃iρK̃
†
i for any ρ. Therefore, the

two sets of Kraus operators {Ki} and {K̃i} provide two equivalent representations of the same
Kraus map.
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2.2. The objective function: formulation in terms of Kraus operators

The optimization goal in quantum control is to maximize the objective function J = 〈�〉 ≡
Tr[�(ρ)�] = Tr[ρtf �], where � is some target Hermitian operator, 〈·〉 denotes the expectation
value at the final time tf and ρtf is the state of the system at the final time, evolved under controls
from some initial state ρ = ρt0 . The Kraus operators {Ki} ≡ {Ki(tf, t0)} describe the generally
non-unitary evolution � of the initial density matrix ρ at time t0 into a density matrix ρtf at

time tf , such that ρtf = �(ρ) = ∑N2

i=1 KiρK
†
i . They contain the information about the

system–environment interaction, all control field interactions and the state of the environment
which can also be used as a control. Hence, J is a function of the Kraus operators

J [K1, . . . , KN2 ] = Tr

⎡
⎣ N2∑

i=1

KiρK
†
i �

⎤
⎦ , (4)

and the control goal can be formulated as a constrained optimization problem: given ρ and
�, maximize J over all sets of operators {Ki} that satisfy the constraint (2).

For the remainder of this paper, we will take ρ and � to be simultaneously diagonal.
Indeed, we can always choose a basis in which � is diagonal, and write ρ and {Ki} in this
basis. Since ρ is Hermitian, there exists a unitary matrix � such that ρ = �σ�†, where σ is
a diagonal matrix. Then the objective function (4) takes the form J = Tr

[ ∑N2

i=1 K̃iσ K̃
†
i �

]
,

where K̃i = Ki�. The new Kraus operators {K̃i} also satisfy the constraint (2), and the
objective function is equivalently represented as a function of K̃i with simultaneously diagonal
matrices σ and �.

2.3. The objective function: formulation in terms of Stiefel manifolds

The above formulation can be expressed more succinctly in terms of the Stiefel manifold [40].
Let M(n, k, F) be the set of n × k matrices with matrix elements in the field F of real or
complex numbers (i.e., F = R or F = C). The Stiefel manifold is defined as

Vk(F
n) = {S ∈ M(n, k, F) : S†S = Ik}.

The manifold Vk(F
n) is called a real (respectively, complex) Stiefel manifold if F = R

(respectively, F = C). Given a Kraus map � and a set of Kraus operators {Ki}, we form the
corresponding N3 × N Stiefel matrix S as follows:

S =

⎛
⎜⎜⎜⎝

K1

K2

...

KN2

⎞
⎟⎟⎟⎠ . (5)

The constraint (2) can be expressed as the equality S†S = IN , which defines the complex
Stiefel manifold S = VN

(
C

N3)
. Furthermore, the objective function (4) can be written as a

function of the Stiefel matrix S :

J (S) = Tr[SρS†(IN2 ⊗ �)]. (6)

The control goal in this formulation is to maximize the objective function (6) over the Stiefel
manifold S. Note that the objective function (6) is by construction real valued for any initial
density matrix ρ and for any Hermitian target operator �.

We now address the non-uniqueness of the Kraus operator parametrization in terms of
the Stiefel manifold. Let W = {U ⊗ IN : U ∈ U(N2)}. It is straightforward to verify that

5



J. Phys. A: Math. Theor. 42 (2009) 205305 A Oza et al

∀S ∈ S and ∀W ∈ W holds S̃ ≡ WS ∈ S. If {Ki} and {K̃i} are two sets of Kraus operators
that determine two Stiefel matrices S and S̃ through (5), then they define the same Kraus
map and are related by the equality (3) if and only if ∃W ∈ W such that S̃ = WS. Thus,
equivalent parametrizations of the same Kraus map correspond to Stiefel matrices related by
S̃ = WS with some W ∈ W . This property implies the invariance of the objective function
under W-transformations, J (S) = J (WS) for any W ∈ W , and will be used in section 5 for
analysis of the search effort for optimization of J with additional constraints on the available
Kraus operators.

The Stiefel manifold Vk(F
n) can also be defined as the set of orthonormal k-frames in

F
n [41]. In this way, the Stiefel manifold S can be specified as the set of ordered N-tuples

X1, . . . , XN ∈ C
N3

such that 〈Xi,Xj 〉 = δij , where δij is the Kronecker delta symbol and

〈·, ·〉 denotes the inner product in C
N3

. In the remainder of the manuscript, the notation 〈·, ·〉
will be used for inner products in several appropriate different spaces (namely, standard inner
products in C

N3
and in C

N2
, and real Hilbert–Schmidt inner products in S and in the tangent

space TSS at S). Vector Xi in this representation contains elements of the ith column of the
Stiefel matrix (5) in certain order and can be decomposed into the direct sum

Xi = Y i
1 ⊕ Y i

2 ⊕ · · · ⊕ Y i
N .

Here each Y i
j ∈ C

N2
, where 1 � i, j � N , is a complex vector of length N2 of the form Y i

j =
{(K1)ji , (K2)ji , . . . , (KN2)ji}, i.e., components of the vector Y i

j are the jith matrix elements
of all the N2 Kraus operators Kl . The orthogonality condition 〈Xi,Xj 〉 = δij implies the
relation

N∑
k=1

〈
Y i

k , Y
j

k

〉 = δij . (7)

Here 〈·, ·〉 denotes the inner product in C
N2

and should be distinguished from the same
notations used above to denote the inner product in C

N3
.

The objective function for diagonal matrices ρ = ∑N
i=1 ρi |i〉〈i| and � = ∑N

j=1 θj |j 〉〈j |
can be written as

J
[{

Y i
j

}] =
N∑

i,j=1

∥∥Y i
j

∥∥2
ρiθj . (8)

It is clear that θmin � J (S) � θmax, where θmin and θmax are the minimum and maximum
eigenvalues of �, respectively. Indeed, we have

θmin

N∑
i,j=1

∥∥Y
j

i

∥∥2
ρj � J � θmax

N∑
i,j=1

∥∥Y
j

i

∥∥2
ρj .

Now, by first summing over i and using (7) and then summing over j and using Tr ρ = 1, we
have the desired inequalities.

Since the maximal value of the objective function J equals θmax, the set of optimal controls
(i.e., the set of all Stiefel matrices which maximize the objective function) is the manifold
Mmax = {S ∈ S : J (S) = θmax}. For the case � = |N〉〈N | of special interest, it follows from
(8) that

Mmax = {{
Y i

j

}N

i,j=1 :
∥∥Y i

j

∥∥2 = δjN for any i such that ρi �= 0
}
.
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3. Gradient and Hessian of J

The numerical analysis in section 4 uses a gradient algorithm for the optimization of the
objective function J (S). This algorithm requires solving the equation

dS

dσ
= grad J (S). (9)

Here grad J is the gradient of the objective function, which induces the corresponding gradient
flow on the Stiefel manifold S via (9).

3.1. Gradient of J

We now derive an explicit expression for the gradient. Denote the differential of J at S ∈ S
by dSJ : TSS → R, where TSS is the tangent space at S. By the product rule for derivatives

dSJ (δS) = � Tr[(δS)ρS†(IN2 ⊗ �) + Sρ(δS)†(IN2 ⊗ �)], (10)

where the real part � is taken since the objective (6) is a real function. Since � Tr A = � Tr A†

for any matrix A, the second term on the right-hand side of (10) can be rewritten as
� Tr[(IN2 ⊗ �)(δS)ρS†] and we obtain

dSJ (δS) = � Tr[(δS)ρS†(IN2 ⊗ �) + (IN2 ⊗ �)(δS)ρS†]

= � Tr[ρS†(IN2 ⊗ �)(δS) + ρS†(IN2 ⊗ �)(δS)]

= 2 � Tr[ρS†(IN2 ⊗ �)(δS)]

= 〈2(IN2 ⊗ �)Sρ, δS〉, (11)

where δS ∈ TSS, and 〈A,B〉 := � Tr[A†B] is the inner product on S and TSS. By the Riesz
representation theorem, there exists X ∈ TSS such that dSJ (δS) = 〈X, δS〉 for all δS ∈ TSS.
The vector X is the gradient of J at S, denoted by grad J (S).

Since grad J (S) must lie in TSS, it is necessary to remove the component orthogonal
to TSS from the vector 2(IN2 ⊗ �)Sρ appearing in the last line of (11). Differentiation of
the identity S†S = IN gives S†(δS) = −(δS)†S, so S†(δS) is skew-Hermitian. This can be
rewritten as δS = SB + (IN3 − SS†)D, where B ∈ M(N,N, C) is a skew-Hermitian matrix
and D ∈ M(N3, N, C) is an arbitrary matrix. (Note that S†(δS) = B, since S†S = IN .) Any
A ∈ M(N3, N, C) can be decomposed as follows:

A = S 1
2 (S†A + A†S) + S 1

2 (S†A − A†S) + (IN3 − SS†)A.

Let C = (S†A+A†S)/2 and B = (S†A−A†S)/2, so that A = SC+SB+(IN3 −SS†)A. Clearly
C is Hermitian and B is skew-Hermitian, so 〈SC, SB − (IN3 − SS†)A〉 = 0. Therefore, SC is
orthogonal to TSS, and hence (A − SC) ∈ TSS. As a result, PS(A) = A − S(S†A + A†S)/2
is an orthogonal projector from M(N3, N, C) onto TSS, and

grad J (S) = 2(IN2 ⊗ �)Sρ − S[S†(IN2 ⊗ �)Sρ + ((IN2 ⊗ �)Sρ)†S]

= (2IN3 − SS†)(IN2 ⊗ �)Sρ − SρS†(IN2 ⊗ �)S.

3.2. Hessian of J

In the analysis thus far, we have only considered grad J (S), which gives first-order information
about J . The Hessian gives useful second-order information about the minima, maxima and
saddles of J (where grad J (S) = 0). At such points, the eigenvectors of the Hessian with
positive (respectively negative) eigenvalues correspond to directions in which J increases
(respectively decreases).

7
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The Hessian of J at S ∈ S acting on δS ∈ TSS is defined as the covariant derivative of
grad J (S) in the direction δS [42]:

Hess J (S) : TSS → TSS, Hess J (S)(δS) = ∇δS grad J (S).

Covariant differentiation of a function on a vector space is equivalent to taking the ordinary
differential. However, S is not a vector space. In the following, the strategy will be to take the
covariant derivative of grad J (S) as a function on M(N3, N, C), which is a vector space, and
then project this onto S. Since S inherits its inner product from M(N3, N, C), this strategy
gives the covariant derivative of grad J (S) on S.

We now calculate an expression for the eigenvalues and eigenvectors of the Hessian of J

on the critical manifolds. By differentiating grad J (S) in the direction of δS, we obtain

∇δS grad J (S) = dS grad J (δS)

= 2(IN2 ⊗ �)(δS)ρ − (δS)S†(IN2 ⊗ �)Sρ − S(δS)†(IN2 ⊗ �)Sρ

− SS†(IN2 ⊗ �)(δS)ρ − (δS)ρS†(IN2 ⊗ �)S − Sρ(δS)†(IN2 ⊗ �)S

− SρS†(IN2 ⊗ �)(δS),

where ∇ denotes the Riemannian connection on M(N3, N, C). We now project this onto
TSS. Letting A = ∇δS grad J (S) gives

Hess J (S)(δS) = ∇δS grad J (S) = PS(∇δS grad J (S)) = A − 1
2S(S†A + A†S).

With some algebra, this expression can be reduced to

Hess J (S)(δS) = 2(IN2 ⊗ �)(δS)ρ − (δS)S†(IN2 ⊗ �)Sρ − (δS)ρS†(IN2 ⊗ �)S

+ 1
2 [SS†(δS)S†(IN2 ⊗ �)Sρ + SS†(δS)ρS†(IN2 ⊗ �)S

− 2SS†(IN2 ⊗ �)(δS)ρ − 2Sρ(δS)†(IN2 ⊗ �)S

+ SρS†(IN2 ⊗ �)S(δS)†S + SS†(IN2 ⊗ �)Sρ(δS)†S].

Combining the first two terms in the square brackets gives

SS†(δS)(S†(IN2 ⊗ �)Sρ + ρS†(IN2 ⊗ �)S) = SS†(δS)(2S†(IN2 ⊗ �)Sρ − S† grad J (S))

= 2SS†(δS)S†(IN2 ⊗ �)Sρ,

since grad J (S) = 0 at a critical point. Combining the last two terms in the square brackets
gives

(SρS†(IN2 ⊗ �)S + SS†(IN2 ⊗ �)Sρ)((δS)†S) = (2(IN2 ⊗ �)Sρ − grad J (S))((δS)†S)

= 2(IN2 ⊗ �)Sρ(δS)†S.

As a result, we have

Hess J (S)(δS) = 2(IN2 ⊗ �)(δS)ρ − (δS)S†(IN2 ⊗ �)Sρ − (δS)ρS†(IN2 ⊗ �)S

− SS†(IN2 ⊗ �)(δS)ρ + SS†(δS)S†(IN2 ⊗ �)Sρ − Sρ(δS)†(IN2 ⊗ �)S

+ (IN2 ⊗ �)Sρ(δS)†S.

4. Numerical assessment of optimization efficiency for landscapes without constraints

This section presents numerical simulations, including (a) an empirical demonstration of the
absence of suboptimal traps in the control landscape, (b) an analysis of the dependence of
optimization efficiency on the dimension of the system N, target operator � and initial state
ρ, and (c) a comparison between coherent and incoherent control.

8
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4.1. The optimization procedure

We now describe the procedure for the numerical analysis of the controlled excursions over
the landscapes without constraints on the controls. First, an adapted version of the algorithm
in [43] is used to randomly generate an initial Stiefel matrix S0 with a uniform distribution on
the Stiefel manifold S. After the initial Stiefel matrix has been generated, the Runge–Kutta
method built into MATLAB is used to solve (9) with the initial condition S(0) = S0. The
method relies on using a variable step size. The tolerances in the differential equation solver
are set so that ‖S†S − IN‖ < 2 × 10−4 at any given point in the trajectory. Integration is
terminated when J (S) > (θmax − 0.01).

The efficiency of the optimization procedure is measured by the two parameters: (1)
the number τ of σ -steps taken by the differential equation solver in MATLAB to reach the
objective value J > (θmax − 0.01) and (2) the path length λ taken to get there. A higher
number τ of σ -steps corresponds to a more difficult optimization problem. Given the number
τ of σ -steps, the path length λ is defined as

λ =
τ−1∑
i=0

||S(i + 1) − S(i)||, (12)

where ‖S‖ = √〈S, S〉 is the norm on S. Similarly, a large value of λ corresponds to a
convoluted trajectory through S and indicates an inefficient optimization.

To ensure statistical uniformity for some simulations, an average was performed over the
initial state with a uniform distribution. Uniform sampling on the space of diagonal density
matrices is implemented as follows. Let V+

n be the standard simplex, i.e., the set of all vectors
z = (z1, . . . , zn) ∈ R

n such that zi � 0 and
∑n

i=1 zi = 1. Let xi = − log(ai) where ai is
uniformly distributed on [0, 1], so xi are exponentially distributed with parameter 1. Now let

yi = xi

x1 + · · · + xn

, 1 � i � n.

Then the random vector y = (y1, . . . , yn) is uniformly distributed on the simplex V+
n [44] and

the diagonal density matrix ρ with matrix elements ρii = yi is uniformly distributed.

4.2. The statistical distribution of the objective for randomly generated controls

In practical optimization of the objective function, either in the laboratory or through
simulations with a numerical algorithm, the initial control is usually randomly generated.
As the Stiefel matrices serve as the controls, we first analyze the distribution of the objective
value for randomly generated initial Stiefel matrices. Figure 1 shows the mean value J̄0 of
the objective function J0(S0, ρ) = Tr

[
S0ρS

†
0(IN2 ⊗ �)

]
for � = |N〉〈N | as a function of

the system dimension N for a uniform distribution of the initial Stiefel matrix S0 and uniform
distribution of the initial diagonal density matrices ρ. For this case, the mean value J̄0 equals
1/N . To understand this result, let |1〉, . . . , |N〉 be an orthonormal basis in the Hilbert space
of the system such that |N〉 ≡ |�〉 is the target state. The uniform generation of the Stiefel
matrix S0 and initial density matrix ρ does not have a preferred state and thus preserves the
symmetry between the states |1〉, . . . , |N〉. Therefore, in the final density matrix ρ ′ obtained
by applying to ρ the Kraus map associated with the Stiefel matrix S0, the averaged (over
uniform distributions of ρ and S0) population pi of each of these states will be the same for
all i. Since

∑N
i=1 pi = 1 and p1 = p2 = · · · = pN , we have pi = 1/N for each i. Hence,

the mean value of J0 = Tr
[
S0ρS

†
0(IN2 ⊗ �)

] ≡ pN will be 1/N for � = |�〉〈�| being a
projector onto the target state |�〉. Figure 1 shows the decrease in the expected initial value of
the objective function along with a decrease in the standard deviation with increasing system

9
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Figure 1. The mean value of the objective function J0(S0, ρ) = Tr[S0ρS
†
0(IN2 ⊗ �)], where S0

has a uniform distribution on the Stiefel manifold, ρ has a uniform distribution over the set of
diagonal density matrices and � = |N〉〈N |. Five hundred samples were taken for every point N.
The error bars show the standard deviation for each N.

(a) (b)

Figure 2. The distribution of the values of the objective function J0(S0, ρ) = Tr[S0ρS
†
0(IN2 ⊗�)]

for N = 2 (a) and for N = 10 (b). The initial Stiefel matrix S0 is uniformly distributed on the
Stiefel manifold, ρ is uniformly distributed on the set of diagonal density matrices and the target
operator has the form � = |N〉〈N |. 104 samples were taken to produce the statistics for each plot.

dimension N. Figure 2 presents the detailed form of the distributions for cases N = 2 and
N = 10, respectively shown in 2a and 2b, with a uniform distribution of S0 on the Stiefel
manifold and a uniform distribution of ρ on the set of diagonal matrices. In this figure,
the distributions of the values of the objective function J0 are produced using 104 randomly
selected pairs of S0 and ρ. The results agree with the natural expectation that the efficiency
of a randomly chosen control decreases with increasing complexity of the system. The figure
also shows that as N rises, the distribution of the objective values becomes more concentrated
around the mean value. An open issue is to obtain an analytical expression for the distribution
of the initial objective value J0(S0, ρ).

10
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Figure 3. The figure shows the value of the objective function J at each step σ in the trajectory
for a pure initial state ρ = diag(1, 0, 0, 0, 0), a mixed initial state and a completely mixed initial
state ρ = 1/5 · diag(1, 1, 1, 1, 1). All three cases correspond to N = 5 and � = |5〉〈5| =
diag(0, 0, 0, 0, 1). Each trajectory reaches perfect control J = 1 at the top of the landscape.

4.3. Absence of suboptimal traps

Let X be a topological space and f : X → R. The function f is said to have a local maximum at
x0 ∈ X if there exists an open neighborhood of x0, Ux0 ⊂ X, such that ∀x ∈ Ux0 , f (x) � f (x0)

and yet there exists some x1 ∈ X such that f (x1) > f (x0). If X represents the space of all
controls and f : X → R is the objective function to be maximized on X, then a local maximum
of f is called a suboptimal (or false) trap in the control landscape produced by f .

The control landscape for the objective function J : S → R defined by (6) is known to
have no traps [32]. Figure 3 numerically demonstrates this general fact for a particular five-
level quantum system. In the figure, three different initial density matrices are considered:
a pure state ρ = |1〉〈1|, a randomly generated mixed state and a completely mixed state
ρ = I5/5. The control goal is to transform each of these states into the final state ρf = |5〉〈5|,
which maximizes the expectation of the target operator � = |5〉〈5|. As shown in the figure,
in each case the gradient algorithm is able to find the control corresponding to the maximum
value J = 1 of the objective function. The algorithm was not impeded by suboptimal local
maxima, for their presence would have caused the algorithm to terminate at J < 1. Many
other cases showed the same trap-free behavior (not shown here).

4.4. Dependence of the search effort on the dimension of the system

We now analyze how the dimension N of the controlled system affects the optimization search
effort. The goal is to numerically analyze the statistical dependence upon N of the number
of steps τ to reach convergence and the path length λ. In this section, the target operator
� = |N〉〈N | is the projector onto the state |N〉. To obtain reasonable statistics, for each N we
average over 50 simulations of the optimization procedure with randomly (uniformly across
S) generated S(0) and randomly generated initial density matrices ρ. We also analyze how the
number of zero eigenvalues of ρ (henceforth denoted as d0) affects the scaling of optimization
efficiency with N.

11
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(a) (b)

Figure 4. Dependence of search efficiency on the dimension of the system N for fixed numbers
N − d0 of nonzero eigenvalues of ρ. Fifty simulations were performed for each point, and
the average values of the number τ of σ -steps and the path length λ are plotted in (a) and (b),
respectively. On each subplot, the six lines, from bottom to top, correspond to the number of
nonzero eigenvalues of the initial density matrix N − d0 = 1, 2, 3, 4, 5, 6, respectively. The error
bars indicate the typical standard deviation of the data for cases N − d0 = 1 and N − d0 = 6.

(a) (b)

Figure 5. Dependence of search efficiency on N for different numbers d0 of zero eigenvalues of ρ.
Fifty simulations were performed for each point, and the average values of the number τ of σ -steps
and the path length λ are plotted in (a) and (b), respectively. On each subplot, the eight lines, from
top to bottom, correspond to the number of zero eigenvalues of the initial density matrix d0 = 0,
1, 2, 3, 4, 5, 6, N − 1, respectively. The error bars indicate the typical standard deviation of the
data for cases d0 = 0 and d0 = N − 1.

In the case of mixed ρ, we change ρ at the start of each individual simulation. Figures 4
and 5 plot τ and λ in two different ways in order to illustrate the issues driving the scaling
efficiency. For each of the six curves in figure 4, the number of nonzero eigenvalues N − d0

of the initial state ρ remains fixed. Each curve labeled by N − d0 corresponds, for example,
to the control of a sequence of quantum systems prepared initially in a state at a relatively
low temperature, with no population in d0 high eigenstates of the density matrix. Both τ

and λ do not show any significant dependence upon N. It is clear that for fixed N, the search
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efficiency is greater for larger values of d0. However, increasing d0 for fixed N − d0 does not
change the slope of the curves in figure 4, showing that the complexity of the search remains
relatively insensitive to N. The most efficient control problem considered in the figure is the
transformation of a pure initial state ρ = |j 〉〈j | (j �= N) into a pure final state ρf = |N〉〈N |.

In contrast, for the simulations in figure 5, d0 is held fixed for all N. This corresponds,
for example, to the control of a sequence of quantum systems with the initial state at ever
higher temperature as N rises, producing a large number of populated energy states. Both τ

and λ increase quite sharply as N increases, as shown in figure 5. It is clear that for fixed N,
the efficiency of optimization increases as d0 increases. However, as with figure 4, increasing
d0 does not change the slope of the curves in figure 5, showing that the efficiency remains
sensitive to N. The most inefficient search corresponds to the control goal of transforming a
maximum entropy initial state with d0 = 0 into a pure final state with d0 = N − 1, which
agrees with simple intuition.

The conclusion from figures 4 and 5 is that when � is a projector, the search efficiency
decreases with increasing numbers of nonzero eigenvalues of ρ. The overall dimension of
the quantum system N has little effect upon the search efficiency, provided that the number
of nonzero eigenvalues of ρ remains fixed. The large standard deviations in both figures are
most likely caused by fluctuations of the initial Stiefel matrix S and of the parameters of the
initial density matrix ρ not included in the number of zero eigenvalues d0.

The results in figure 4 have practical relevance. In the laboratory, a sequence of quantum
systems with increasing N and a roughly fixed small number of populated energy levels can
be arranged. Under these conditions, the results shown in figure 4 indicate that the search
effort in the laboratory should not be very sensitive to the dimension of the quantum system
under control. This behavior is generally consistent with the broad findings that system and
environmental complexity appear to have little effect on the number of iterations to reach
successful control in the laboratory.

4.5. Dependence of the search effort on the degeneracy structure of ρ and �

In this section, we analyze the dependence of the optimization search effort on the degeneracy
structure of ρ and �. Recall that Mmax = {S ∈ S : J (S) = θmax}, where θmax is the maximal
eigenvalue of �. As shown in [32], the dimension of Mmax is

dim(Mmax) = 2(d0 + e1)N
3 − (2d0e1 + 1)N2, (13)

where d0 and e1 are the degeneracies of the zero eigenvalue of ρ and maximal eigenvalue θmax of
�, respectively. The dimension of the maximum manifold as a function of d0 and e1 is plotted
on figure 6(a). If d0 is close to N, then the initial state ρ is close to a pure state, and for e1 close
to N, the target operator � is close to a constant multiple of the identity operator. Equation (13)
and figure 6(a) show that large values of d0 and e1 correspond to higher-dimensional maximum
submanifolds (note that the dimension of the maximum manifold on the vertical axis of
figure 6(a) increases in the downward direction).

Figures 6(b) and (c) show the dependence of efficiency of optimization upon d0 and e1.
As d0 and e1 approach N, the efficiency of optimization increases rapidly. Comparison with
figure 6(a) shows a strong positive correlation between the dimension of the maximum
manifold and the efficiency of optimization. This result is expected, since an increase in
dim(Mmax) corresponds to a larger target submanifold of optimal solutions. The presence of
the positive correlation is illustrated in a more explicit way in figure 7, where the two parameters
τ and λ characterizing the efficiency of optimization are plotted versus the dimension of the
maximum submanifold. The dimension of the maximum manifold is determined by the pair
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(a)

(b) (c)

Figure 6. Dependence of search efficiency on the degeneracy d0 of the zero eigenvalue of ρ and
the degeneracy e1 of the maximal eigenvalue of � for N = 10. (a) shows the dimension of the
maximum submanifold as a function of these two parameters. (b) shows the median number τ

of σ -steps and (c) shows the median path length λ. (b) and (c) show that the search efficiency
increases as the dimension of the maximum submanifold increases.

(d0, e1), and different pairs can produce the same dimension of the maximum manifold. Each
point in figure 7 corresponds to a pair (d0, e1). The figure shows the general trend that
an increase in the dimension of the maximum manifold decreases the required optimization
search effort; however, the correlation is not perfect and different pairs (d0, e1) and (d ′

0, e
′
1)

with the same or almost the same dimensions of their respective maximum manifolds can have
different values of the parameters τ and λ.

4.6. Comparison of coherent and incoherent control

We now compare the efficiencies of coherent and incoherent control. The coherent control
mechanism is implemented as follows. Let S(0) be defined by Ki = U/N for some U ∈ U(N).
It is shown in appendix A that unitary Kraus maps form an invariant submanifold of S with
respect to grad J (S). That is, if SU = {S ∈ S : ∃U ∈ U(N) : Ki = U/N}, then the solution to
dS/dσ = grad J (S) with the initial condition S(0) = S0 ∈ SU will lie entirely in SU . Hence,
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(a) (b)

Figure 7. Dependence of search efficiency on the dimension of the maximum submanifold for
N = 10. (a) and (b) show the dependence of the median number τ of σ -steps and median path
length λ, respectively, on the dimension of the maximum submanifold. The dimension of the
maximum submanifold is determined by the pair (d0, e1); each point on the plot corresponds to
a (d0, e1) pair. These figures show the increase in the search efficiency as the dimension of the
maximum submanifold increases.

solving the differential equation allows us to simulate density matrix evolution by coherent
unitary control. Indeed, then ρt = ∑N2

i=1 Ki(t)ρK
†
i (t) = U(t)ρU †(t).

In all the simulations here, � = |N〉〈N |. For unitary control, the maximal value of the
objective function J [U ] = Tr[UρU †�] is the maximal eigenvalue ρmax of the initial state
ρ. Thus, to ensure a fair comparison between the coherent and incoherent control, the target
observable value is set to J = ρmax for both incoherent and coherent control, and the algorithm
stops as soon as the value J = ρmax − 0.01 is attained. This stopping criteria is the reason for
the difference between the curve corresponding to incoherent control in figure 5(a) and the
curve in figure 8; in the simulations displayed in the prior figure, the target observable value
was J = 1 rather than J = ρmax. Figure 8 shows that with the ability to generate arbitrary
Kraus maps, incoherent control can be a far more efficient process than coherent control for
both pure and mixed ρ, especially for large values of N. The greater freedom allowed by
incoherent control decreases the complexity of the problem and allows for a more efficient
search.

5. Control under linear constraints on the Kraus operators

This section considers control under additional constraints on the available Kraus maps, which
produce constraints on the Stiefel manifold. The target operator is assumed to have the form
� = |N〉〈N |.

Let h : S → R
q be a set of q real-valued constraints. Recall from section 2.3 that

the objective function J is invariant under W-transformations. Since W-transformations
correspond to different parametrizations of the same physical evolution Kraus map, any
reasonable constraint should be W-invariant, and thus we impose the requirement that
h(S) = h(WS) for any S ∈ S and any W ∈ W .

We restrict our attention to affine constraints, which are of the form h(S) = g(S) − γ ,
where g is linear over R and γ ∈ R

q is a constant. Specifically, for a given set of matrices
{B1, . . . , Bn} we consider W-invariant affine constraints of the form Tr

(
B

†
l Kj

) = 0 for each
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Figure 8. Comparison of the optimization efficiency for incoherent control by Kraus maps
and coherent control by unitary transformations, for both pure and mixed initial states ρ. Fifty
simulations were performed to generate each point. The mean number τ of σ -steps with typical
standard deviations indicated by error bars is plotted on the vertical axis. The solid lines correspond
to control by Kraus maps, and the dashed lines correspond to control by unitary maps. The lines
marked by circles correspond to pure state ρ, and the unmarked lines correspond to mixed ρ.
Similar behavior is observed for path length (not shown).

l = 1, . . . , n, j = 1, . . . , N2 and Bl ∈ MN . Since Tr
(
B

†
l K̃j

) = Tr
( ∑N2

i=1 ujiB
†
l Ki

) = 0 by
linearity of the trace operation, this constraint is W-invariant and the set of Kraus matrices
satisfying this constraint forms a W-invariant subset of the Stiefel manifold.

5.1. The numerical procedure

The constraints Tr
(
B

†
i Kj

) = 0 with 1 � i � n, 1 � j � N2 can be rewritten as a set of 2nN2

constraints hk : S → R defined as follows. Let G̃l ∈ M(N3, N, C) for l = n(j −1)+ i be the
matrix with Bi occupying rows (j −1)N + 1 through jN and with other matrix elements set to
zero. Then define Gk = G̃k for k = 1, . . . , nN2,Gk = iG̃k−nN2 for k = nN2 + 1, . . . , 2nN2

and set hk(S) = 〈Gk, S〉. The control goal is to maximize J over h−1(0).
First, we need to find a matrix S̃ ∈ Sh which represents an initial control satisfying the

constraint. To do this, define

f (S) =
2nN2∑
k=1

〈Gk, S〉2. (14)

We see that

dSf (δS) =
2nN2∑
k=1

2〈Gk, δS〉〈Gk, S〉 =
〈

2nN2∑
k=1

2〈Gk, S〉Gk, δS

〉
. (15)
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Hence, grad f (S) = ∑2nN2

k=1 2〈Gk, S〉Gk . Now generate an arbitrary S0 ∈ S and solve the
equation

dS

dσ
= −PS(grad f (S)),

with the initial condition S(0) = S0, where PS is the orthogonal projector from M(N3, N, C)

onto TSS (see section 3.1). Then, if the landscape of f on S is trap free, the algorithm
will always find a global minimum S̃ of f , which will satisfy the constraint h(S̃) = 0. It is
unknown whether this constrained landscape is trap free.

After producing the initial Stiefel matrix S̃, we maximize the objective function J on Sh

by solving the differential equation
dS

dσ
= Ph,S(grad J (S)),

with the initial condition S(0) = S̃. Here grad J (S) is the gradient of J on S and Ph,S is a
projector from TSS onto TSSh. The explicit expression for Ph,S is derived in appendix B.

5.2. Numerical results: general linear constraint

It is difficult to derive a general analytical expression for the maximum value of J on the
constrained manifold h−1(0) due to the complicated nature of the constraints. For this reason,
we cannot determine that the gradient algorithm is stuck at a false trap S̃ (where grad J (S̃) = 0)
by simply calculating J (S̃). Therefore, for a fixed constraint h, we performed the optimization
procedure ten times using a different initial condition S̃(0) each time and compared the resultant
ten maximal values of the objective function. Let S∗

i be the optimal control on the ith run
(where 1 � i � 10), with the corresponding maximum value J ∗

i = J (S∗
i ). If J ∗

k < J ∗
l for

some k and l, then S∗
k is a false trap. Note that J ∗

k = J ∗
l for all k and l does not guarantee that

the landscape is trap free; the only conclusion is that the ten runs of the algorithm have not
found a false trap.

We performed simulations for N = 2, 3, 4. For each N, five different initial states ρ were
generated, and for each ρ five different collections of matrices {B1, . . . , Bn} corresponding to
five constraints were produced. We consider n � N2 − N − 1, where N2 − N − 1 represents
the maximum number of constraints of special form corresponding to fixing to zero individual
matrix elements of the Kraus operators. As a result of the numerical optimization, each of the
ten runs performed with initial controls S̃i (0) produced the same maximal value J ∗ = J ∗

i , and
therefore we did not find a false trap. Although this result does not prove the absence of false
traps for linear constraints, it indicates that it is surprisingly difficult to find such traps, if they
exist.

5.3. Numerical results: fixing to zero individual matrix elements

We now consider a special case of the W-invariant linear constraints such that h : S → R
2N2

is the constraint (Kl)ij = 0 for all l = 1, . . . , N2 and for some pair (i, j). The constraint
corresponds to setting the ji th element in each of the N2 Kraus operators to zero; we
consider the real and imaginary parts separately, hence there are 2N2 constraints. Since
K̃n = ∑N2

m=1 unmKm defines the W-transformation, (K̃n)ij = 0 for all n as well. Hence,
h(WS) = h(S), and the constraint is W-invariant. More generally, we consider W-invariant
constraints of the form

(Kl)iq ,jq
≡ (

Y
iq
jq

)
l
= 0, l = 1, . . . , N2, ∀jq ∈ I1, ∀iq ∈ I2, q = 1, . . . , n,

(16)

where I1 and I2 are two subsets of the set {1, 2, . . . , N} each with n elements.
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For such a constraint, equation (8) can be used to determine analytically the optimal value
of the objective function J on the constrained set h−1(0):

Jmax =
{

1 if N /∈ I1

1 − ∑
j∈I2

ρjj if N ∈ I1.

For each N = 2, 3, 4, 5, we fix to zero n matrix elements of every Kraus operator, with n
between N and N2 − N − 1 (the maximum possible number of matrix elements which can
simultaneously be fixed to zero). For a given n, the optimization procedure was performed
25 times, and a different collection of matrix elements was fixed to zero during each run
(i.e., different sets I1 and I2 were chosen). The gradient algorithm was able to reach the
maximal value Jmax each time, showing that there appear no false traps in this landscape. If
suboptimal maxima were encountered, the algorithm would have got stuck at J < Jmax, and
global optimization could not have been performed. Thus the optimization procedure did not
discover any false traps for 25 randomly generated constraints. Again, this could not be taken
as conclusive proof of the absence of false traps. Evidently, more complex or demanding
constraints are called for to find traps.

6. Conclusion

This paper analyzes the efficiency of optimization over control landscapes for open quantum
systems governed by Kraus map evolution. Several conclusions stem from the findings. When
� is a rank-one projector, which corresponds to the control goal of transforming an initial
state ρ into a pure state, the search efficiency primarily depends on the number of nonzero
eigenvalues of the initial state. The efficiency is relatively insensitive to the dimension of
the quantum system N, provided that the number of populated energy states in the initial
density matrix remains constant. As the number of nonzero eigenvalues of ρ rises with N, the
search for an optimal control becomes less efficient. This result agrees with the expectation
that transforming a high-entropy initial state into a low-entropy final state is a more difficult
control problem than controlled transformations between states with similar entropy.

The analysis also reveals that for fixed N, the search efficiency positively correlates with the
number of zero eigenvalues of ρ. This result can be extended to a more general principle: when
the dimension of the quantum system is fixed, the dimension of the maximum submanifold
(the set of Kraus operators that correspond to optimal control) positively correlates with the
efficiency of the optimization procedure. This statement agrees with the common intuition
that a ‘larger’ target results in an easier and more efficient search. The scaling behavior
with N found in this work is also consistent with that identified with unitary evolution, both
dynamically and kinematically [35, 36].

We then showed that incoherent control modeled by Kraus map evolution, under the
assumption that any Kraus map can be generated, is more efficient than coherent control
modeled by unitary evolution. The larger number of control variables available in incoherent
control actually decreases the complexity of the search effort. While the influence of the
environment makes the total system ostensibly more complicated, the results show that the
ability to control the environment can decrease the search effort.

We also analyzed control landscapes with linear constraints on the Kraus maps. Even
with the maximum possible number of linear constraints, false traps were not found. While
this result does not prove the absence of false traps, it is nonetheless surprising. In the future
work, we would like to investigate the control landscapes for constrained Kraus maps in more
detail both numerically and theoretically.
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The kinematic analysis needs to be extended by a more detailed investigation of the
role of the critical structure of the control landscapes on the search effort. In particular,
the possible influence of saddle manifolds on the required search effort should be analyzed.
This analysis may reveal more subtle structural details about the quantum control landscapes.
Also non-topological properties of quantum control landscapes may affect the optimization
efficiency. In general, it is necessary to find all essential characteristics of the initial state ρ

and the target operator � that affect the efficiency of the search. Another important problem
is to study the dynamics of controlled open quantum systems with regard to topological and
non-topological characteristics of the corresponding dynamical control landscapes. Various
specific model systems can be used to study the dependence of search efficiency upon the
parameters characterizing the system and environment. The presence or absence of false
traps in the dynamical control landscapes should be investigated, including situations with
constraints on the dynamical controls.
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Appendix A. Invariance of the submanifold SU for dS/dσ = grad J (S(σ))

Here we show that the submanifold SU := {SU ∈ S|∃U ∈ U(N) such that Ki = 1
N

U for i =
1, . . . , N2} (i.e., all of the Kraus matrices determining a point SU ∈ SU are equal to the
same constant multiple of some unitary matrix) is invariant for the differential equation
dS/dσ = grad J (S(σ )).

Let X be a manifold with tangent bundle T X. Consider the differential equation

dx/dσ = f (x(σ )), (A.1)

where f : X → T X is a smooth function and x : [0, 1] → X is a path through X parametrized
by the real variable σ . A manifold Y ⊂ X is called an invariant submanifold for the differential
equation (A.1) if x(0) ∈ Y implies that x(σ ) ∈ Y for all σ ∈ [0, 1]. A compact manifold
Y ⊂ X is an invariant submanifold for (A.1) if and only if f (x) ∈ TxY for each x ∈ Y [45].

It was shown in section 3.1 that δS ∈ TSS if and only if S†(δS) is skew-Hermitian.
Therefore, writing δS as a stack of N2N × N matrices δS1, . . . , δSN2 , we see that for any
SU ∈ SU , δS ∈ TSU

SU if the matrix U † ∑N2

k=1 δSk is skew-Hermitian.

Theorem 1. Let E be the N2 × 1 matrix (column vector) with all elements equal to 1 (i.e.,
E(i) = 1 for all i). Then for any S = 1

N
(E ⊗ U) ∈ SU , the matrix Z := U †[(E† ⊗ IN) grad

J (S)] is skew-Hermitian.

Proof. Recall that grad J (S) = (2IN3 − SS†)(IN2 ⊗ �)Sρ − SρS†(IN2 ⊗ �)S. Then

Z = U †(E† ⊗ IN)

[
2

N
IN3 − 1

N3
(E ⊗ U)(E† ⊗ U †)

]
(IN2 ⊗ �)(E ⊗ U)ρ

−U † 1

N3
(E ⊗ U)ρ(E† ⊗ U †)(IN2 ⊗ �)(E ⊗ U)

= U †
[

2

N
(E† ⊗ IN)IN3 − 1

N
U(E† ⊗ U †)

]
(IN2 ⊗ �)(E ⊗ U)ρ

−U † 1

N
Uρ(E† ⊗ U †)(IN2 ⊗ �)(E ⊗ U)
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=
[

2

N
U †(E† ⊗ IN)IN3 − 1

N
(E† ⊗ U †)

]
(IN2 ⊗ �)(E ⊗ U)ρ

− 1

N
ρ(E† ⊗ U †)(IN2 ⊗ �)(E ⊗ U)

=
[

2

N
U †(E† ⊗ IN)IN3 − 1

N
(E† ⊗ U †)

]
(E ⊗ �U)ρ − NρU †�U

= 2NU †�Uρ − NU †�Uρ − NρU †�U

= N [U †�U, ρ], (A.2)

which is skew-Hermitian for Hermitian matrices ρ and �. As a result, grad J (SU) ∈ TSU
SU

for SU ∈ SU , so SU is an invariant submanifold for the differential equation dS/dσ =
grad J (S(σ )). �

Appendix B. Derivation of the projector Ph,S

Let h̃ : M(N3, N, C) → R
q define a constraint on the Stiefel matrices, which restricts the set

of admissible controls to Sh = S ∩ h̃−1(0). The goal is to find a projector Ph,S : TSS → TSSh,
such that the gradient of J on Sh will be Ph,S(grad J (S)).

We will use the following lemma.

Lemma 1. Let X and Y be Riemannian manifolds and F : X → Y . Suppose that dxF is
surjective for all x ∈ X. Let Px be the operator on TxX defined as Px = I − (dxF )∗ ◦
(dxF ◦ (dxF )∗)−1 ◦ dxF . Then (a) Px is a projection (that is, Px

2 = Px) and (b)

Px : TxX → TxF
−1(F (x)).

Proof.

(a) It is straightforward to see that P 2
x = Px :

P 2
x = (I − (dxF )∗ ◦ (dxF ◦ (dxF )∗)−1 ◦ dxF )2

= I − 2(dxF )∗ ◦ (dxF ◦ (dxF )∗)−1 ◦ dxF

+ (dxF )∗ ◦ (dxF ◦ (dxF )∗)−1 ◦ dxF ◦ (dxF )∗ ◦ (dxF ◦ (dxF )∗)−1 ◦ dxF

= I − 2(dxF )∗ ◦ (dxF ◦ (dxF )∗)−1 ◦ dxF + (dxF )∗ ◦ (dxF ◦ (dxF )∗)−1 ◦ dxF

= I − (dxF )∗ ◦ (dxF ◦ (dxF )∗)−1 ◦ dxF = Px. (B.1)

(b) It is clear that if dxF (z) = 0, then z ∈ TxF
−1(F (x)). Note that any vector v ∈ TxX can

be written as v = z + dxF
∗(w), where w is arbitrary and z ∈ TxF

−1(F (x)). Indeed, let
w = (dxF ◦ (dxF )∗)−1 ◦ dxF (v). Then dxF (z) = dxF (v) − dxF ◦ (dxF )∗ ◦ (dxF ◦
(dxF )∗)−1 ◦ dxF (v) = 0, and therefore z ∈ TxF

−1(F (x)).
Now we will show that the image of Px lies in TxF

−1(F (x)). For any v ∈ TxX, write
v = z + dxF

∗(w), where z ∈ TxF
−1(F (x)). Then Px(v) = Px(z) + Px ◦ (dxF )∗(w) =

z − (dxF )∗ ◦ (dxF ◦ (dxF )∗)−1 ◦ dxF (z) + (dxF )∗(w) − (dxF )∗ ◦ (dxF ◦ (dxF )∗)−1 ◦
dxF ◦(dxF )∗(w) = z−(dxF )∗ ◦(dxF ◦(dxF )∗)−1 ◦ dxF (z) = z since z ∈ TxF

−1(F (x))

by assumption. Hence, the image of Px lies in TxF
−1(F (x)). This proves the lemma. �

Recall now that PS is the projector from M(N3, N, C) to TSS. Then dSh = dSh̃|TSS
and dSh

∗ = PS ◦ dSh̃
∗. If dSh is full-rank, then according to lemma 1 we have a projector

Ph,S : TSS → TSSh:

Ph,S(δS) = δS − dSh
∗ ◦ (dSh ◦ dSh

∗)−1 ◦ dSh(δS)

= δS − PS ◦ dSh̃
∗ ◦ (dSh̃ ◦ PS ◦ dSh̃

∗)−1 ◦ dSh̃(δS).
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In what follows, we will restrict our attention to affine maps defined by a set
g̃ = (g̃1, . . . , g̃q) of bounded linear functionals g̃i : M(N3, N, C) → R. By the Riesz
representation theorem, there exist unique matrices Gi ∈ M(N3, N, C) such that g̃i(A) =
〈Gi,A〉 for all A ∈ M(N3, N, C). For a constraint of the form hk(S) = �(

Y i
j

)
k

= 0
(respectively �(

Y l
j

)
k

= 0) as considered in section 5.3, these matrices have the form
Gk = |d〉〈l| (respectively Gk = i|d〉〈l|), where d = (k − 1)N2 + (j − 1)N .

Since γ is constant and g̃ is linear, dSh̃ = g̃ and dSh̃
∗ = g̃∗. To determine a formula for

g̃∗, note that for any y ∈ R
q

〈g̃∗(y), δS〉 = 〈y, g̃(δS)〉 =
q∑

i=1

yig̃i(δS) =
q∑

i=1

yi〈Gi, δS〉 =
〈 q∑

i=1

yiGi, δS

〉
.

Therefore, g̃∗(y) = ∑q

i=1 yiGi . Putting these expressions together gives

dSh̃ ◦ dSh̃
∗(y) = g̃

(
q∑

i=1

yiPS(Gi)

)
=

⎛
⎜⎝

〈
G1,

∑q

i=1 yiPS(Gi)
〉

...〈
Gq,

∑q

i=1 yiPS(Gi)
〉
⎞
⎟⎠

=
q∑

i=1

yi

⎛
⎜⎝

〈G1,PS(Gi)〉
...

〈Gq,PS(Gi)〉

⎞
⎟⎠ = Zy,

where Z has matrix elements Zij = 〈Gi,PS(Gj )〉. We finally obtain

Ph,S(δS) = δS − PS ◦ g̃∗(Z−1g̃(δS)) = δS −
q∑

i=1

PS(Gi)(Z
−1g̃(δS))i

= δS −
q∑

i=1

q∑
j=1

PS(Gi)(Z
−1)ij g̃j (δS) = δS −

q∑
i=1

q∑
j=1

PS(Gi)(Z
−1)ij 〈Gi, δS〉.
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